Recent progress on GPU-based Monte Carlo Simulations for Radiation Therapy

Radiation Oncology

Xun Jia, Ph.D. Xun.Jia@UTSouthwestern.edu

- Recent progress
- Two packages
- Considerations
- Conclusion

- Recent updates
- Two packages
- Considerations
- Conclusion

GPU ••••

	Core	Clock Rate (MHz)	Memory (MB)
Geforce GTX TITAN black (Feb 2014)	• 2880	• 889	• 6144
Geforce GTX 1080 Ti (Mar 2017)	• 3584	• 1417	• 11264

Radiation Oncology

UT Southwestern Medical Center

10609 (SP) 332 (DP)

5120 (SP) 1706 (DP)

Processing power (GFLOPS)

• 699

• 999

Price (\$)

GPU-MC project at UTSW

2009	2011	2012	2014	2015
gDPM	gCTD	gPMC	goMC	goCMC
	gMCDR	R	gBMC	

- Particle types: photon, electron, proton, carbon ion, free radical...
- Energy ranges: $eV \rightarrow keV \rightarrow MeV \rightarrow GeV$
- Spatial scales: nm (DNA level) \rightarrow m (human level)
- Clinical applications: external beam therapy, brachytherapy

UTSouthwestern Medical Center

2016 goMicroMC

- $gPMC \rightarrow goPMC$
- Race condition

$$t = \frac{N\Delta t}{N_t} \left(1 - \frac{\alpha}{Mf^2}\right) + \frac{\alpha}{\beta}$$

Qin et. al. PMB, 61, 7437 (2016)

Simulation time of 10⁷ C₁₂: 11~162 sec (100~400 MeV/u)

Radiation Oncology

Qin et. al. PMB, 62, 3628(2017)

Particle therapy

Biological dose calculation with RMF model

$$\alpha_q = \frac{\Sigma}{\Sigma_X} \left[\alpha_X + 2 \frac{\beta_X}{\Sigma_X} (\Sigma \overline{z}_f) - \beta_q \right]^2 \beta_X,$$

$$\beta_q = \left(\frac{\Sigma}{\Sigma_X} \right)^2 \beta_X,$$
Oin of a

Radiation Oncology

Qin et. al. To appear in Red Journal (2017)

Particle therapy

Biological inverse optimization

$$f(\mathbf{N}) \equiv \sum_{i} w_{i} \left| \ln S(\mathbf{x}, \mathbf{N}) - \ln S_{p}(\mathbf{x}) \right|_{\mathbf{x} \in \mathrm{OTV}_{i}}^{2}$$

$$+\sum_{i} w_{i} \left(\ln S(\boldsymbol{x}, \boldsymbol{N}) - \ln S_{p}(\boldsymbol{x}) \right) \Theta \left(-\ln S(\boldsymbol{x}, \boldsymbol{N}) - \ln S_{p}(\boldsymbol{x}) \right) \Theta \left(-\ln S(\boldsymbol{x}, \boldsymbol{N}) - \ln S_{p}(\boldsymbol{x}) \right) = 0$$

$$-\ln S(x, N) = \langle a_D(x), N \rangle + \langle \sqrt{b_D(x)} \rangle$$

$$f(N) = \sqrt{W} \cdot \left(AN + BN \cdot BN - \left(\alpha_X \cdot D_p + \beta_X\right)\right)$$

Full GPU-MC based biological optimization

Qin et. al. To appear in Red Journal (2017)

Radiation Oncology

- $\cdot D_p^2 \Big) \Big) \cdot \Theta \Big|^2$,
- $(\overline{)}, N \rangle^2$.
- $(\mathbf{x}, \mathbf{N}) + \ln S_p(\mathbf{x}) \Big|_{\mathbf{x} \in OAR_i}^2,$

Particle therapy

Radiation Oncology

Qin et. al. To appear in Red Journal (2017)

Geometry modeling

- Vo
- Ste
- Tw
- Tir

oxelized geom	, ,					
tored in a tree	(a) 2					
wo key geome me vs memor	etry funct y type	ions			1	5
	Parameterized geometry (µs/history)			Voxelized		
Case	Global memory	Texture memory	Shared memory	geometry (µs/history	α_1	
Brachytherapy photon transport	5.546 3.792 2.121		0.761	2.79		
Coupled electron- photon transport	0.292	0.234	0.198	0.060	3.29	

Radiation Oncology

Chi et. al., PMB 61, 5851 (2016)

Geometry modeling

texture memory

• Time vs memory size

Radiation Oncology

Chi et. al., PMB 61, 5851 (2016)

Radiation Oncology

Microscopic MC

gMicroMC

Radiation Oncology

Tian et. al., PMB 62, 3081 (2017) **UTSouthwestern**

Medical Center

Microscopic MC

- Chemistry stage
 - Step-by-step diffusion reaction model
 - Brownian bridge considered
- Complexity due to chemical interactions
 - Particle binning with reaction radius
 - Search reactant within neighbors

	Ν	Simulatio	Speed-		
		Geant4- DNA	gMicroMC	up	
750 keV electron	101829	102865.4	599.2	171.1	
5MeV proton	56122	96446.5	489.0	197.2	

Radiation Oncology

Tian et. al., PMB 62, 3081 (2017)

Microscopic MC

Radiation Oncology

UT Southwestern Medical Center

Tian et. al., PMB 62, 3081 (2017)

- Recent progress
- Two packages
- Considerations
- Conclusion

Two packages

goMC

 Coupled photon/electron transport with quadratic/voxelized geometry

Radiation Oncology

Two packages

gMicroMC

Radiation Oncology

- Recent progress
- Two packages
- Considerations
- Conclusion

Considerations

- MC in the rapid (GPU) parallelization era
 - New algorithms vs Embarrassing parallelization
 - Speed-memory tradeoff

Radiation Oncology

0

Considerations

• MC in the rapid (GPU) parallelization era

- Single vs double precision
- Cross platform • OpenCL

Beam	No. of		No. of particles	Phantom	goMC (s)					
	particles	Beam			NVidia	AMD	AMD	Intel i7-3770	Intel i7-3770	
					GeForce	Dadaan	Padeon HD	CPU	CPU	
15MeV	5×10^{6}		GT TIT	GTX			(4 cores, 8	(single thread)		
electron	3~10			Т	TITAN	K9 290X	7370	threads)		
6MV photon	5×10 ⁸	15M	15MeV	5×10^{6}	Water	4.3 ± 0.1	4.7 ± 0.2	123.9 ± 1.4	51.7 ± 1.7	213.4 ± 5.2
		– electron	5~10	Slab	4.9 ± 0.1	5.3 ± 0.1	142.4 ± 0.8	59.2 ± 0.9	224.5 ± 7.6	
			_		Water	36.9 ± 0.0	31.4 ± 0.1	1441.0 ± 3.2	471.4 ± 4.0	2139.1 ± 2.4
		6MV	5×10^{8}	Slab	50.2 ± 0.2	36.3 ± 0.3	1766.6 ± 0.7	511.6 ± 9.4	2943.4 ± 17.9	
		photon	3^10	Half-	196102	260 + 0.2	$1701 4 \pm 170$	521 1 + 6 9	20915 ± 10.2	
				Slab	40.0 ± 0.2	50.0 ± 0.2	$1/01.4 \pm 1/.0$	321.1 ± 0.8	2901.3 ± 10.3	

Radiation Oncology

- Recent progress
- Two packages
- Considerations
- Conclusion

Conclusion

- Continuous development of GPU-based MC
 - New physics regimes
 - New capabilities
 - New applications
- Two packages open for testing and collaborations
- How to best use GPU's power in an MC problem?

Radiation Oncology

Conclusion

- Speed is ...
 - Speed
 - Accuracy
 - Big data

Physica Medica Volume 42, October 2017, Pages 76-92

Review paper

A review of GPU-based medical image reconstruction

Philippe Després a, c 😤 🖾, Xun Jia b 🖾

- ^a Département de physique, de génie physique et d'optique, Université Laval 1045, avenue de la Médecine, Québec (Québec) G1V 0A6, Canada
- ^b Department of Radiation Oncology, University of Texas Southwestern Medical Center, 2280 Inwood Rd., MC 9303, Dallas, TX 75390, USA
- ^c Département de radio-oncologie, CHU de Québec Université Laval, 11 Côte du Palais, Québec (Québec), G1R 2J6, Canada

Received 10 April 2017, Revised 6 July 2017, Accepted 30 July 2017, Available online 5 September 2017.

Radiation Oncology

Acknowledgement

- UTSW team
 - Steve B. Jiang
 - Nan Qin
 - Min-Yu Tsai
 - Zhen Tian
 - Yujie Chi
 - ...
- Collaborators
 - Harald Paganetti and team @ MGH
 - Katia Parodi and team @ LMU
- Funding support

